EXERCISES FOR SECTION 8.7

In Exercises 1-4, match the Taylor polynomial approximation of the function $f(x) = e^{-x^2/2}$ with the correct graph. [The graphs are labeled (a), (b), (c), and (d).]

- 1. $g(x) = -\frac{1}{2}x^2 + 1$
- 2. $g(x) = \frac{1}{8}x^4 \frac{1}{2}x^2 + 1$
- 3. $g(x) = e^{-1/2}[(x+1)+1]$
- 4. $g(x) = e^{-1/2} \left[\frac{1}{3}(x-1)^3 (x-1) + 1 \right]$

In Exercises 5-8, find a first-degree polynomial function P_1 whose value and slope agree with the value and slope of f at x = c. Use a graphing utility to graph f and P_1 . What is P_1

5.
$$f(x) = \frac{4}{\sqrt{x}}$$
, $c = 1$

5.
$$f(x) = \frac{4}{\sqrt{x}}$$
, $c = 1$ 6. $f(x) = \frac{4}{\sqrt[3]{x}}$, $c = 8$

7.
$$f(x) = \sec x$$
, $c = \frac{\pi}{4}$ 8. $f(x) = \tan x$, $c = \frac{\pi}{4}$

8.
$$f(x) = \tan x$$
, $c = \frac{\pi}{4}$

Graphical and Numerical Analysis In Exercises 9 and 10, use a graphing utility to graph f and its second-degree polynomial approximation P_2 at x = c. Complete the table comparing the values of f and P_2 .

9.
$$f(x) = \frac{4}{\sqrt{x}}$$
, $c = 1$

$$P_2(x) = 4 - 2(x - 1) + \frac{3}{2}(x - 1)^2$$

x	0	0.8	0.9	1	1.1	1.2	2
f(x)							
$P_2(x)$							

10.
$$f(x) = \sec x$$
, $c = \frac{\pi}{4}$

$$P_2(x) = \sqrt{2} + \sqrt{2}\left(x - \frac{\pi}{4}\right) + \frac{3}{2}\sqrt{2}\left(x - \frac{\pi}{4}\right)^2$$

x	-2.15	0.585	0.685	$\frac{\pi}{4}$	0.885	0.985	1.785
f(x)							
$P_2(x)$							

- 11. Conjecture Consider the function $f(x) = \cos x$ and its Maclaurin polynomials P_2 , P_4 , and P_6 (see Example 5).
 - (a) Use a graphing utility to graph f and the indicated polynomial approximations.
 - (b) Evaluate and compare the values of $f^{(n)}(0)$ and $P_n^{(n)}(0)$ for n = 2, 4, and 6.
 - (c) Use the results in part (b) to make a conjecture about $f^{(n)}(0)$ and $P_n^{(n)}(0)$.
- 12. Conjecture Consider the function $f(x) = x^2 e^x$.
 - (a) Find the Maclaurin polynomials P_2 , P_3 , and P_4 for f.
 - (b) Use a graphing utility to graph f, P_2 , P_3 , and P_4 .
 - (c) Evaluate and compare the values of $f^{(n)}(0)$ and $P_n^{(n)}(0)$ for n = 2, 3, and 4.
 - (d) Use the results in part (c) to make a conjecture about $f^{(n)}(0)$ and $P_{n}^{(n)}(0)$.

In Exercises 13–24, find the Maclaurin polynomial of degree nfor the function.

13.
$$f(x) = e^{-x}$$
, $n = 3$

14.
$$f(x) = e^{-x}$$
, $n = 5$

15.
$$f(x) = e^{2x}$$
, $n = 4$

16.
$$f(x) = e^{3x}$$
, $n = 4$

17.
$$f(x) = \sin x$$
, $n = 1$

17.
$$f(x) = \sin x$$
, $n = 5$
18. $f(x) = \sin \pi x$, $n = 3$
19. $f(x) = xe^x$, $n = 4$
20. $f(x) = x^2e^{-x}$, $n = 4$

19.
$$f(x) = xe^x$$
, $n = 4$

$$x+1$$

21.
$$f(x) = \frac{1}{x+1}$$
, $n=4$ 22. $f(x) = \frac{x}{x+1}$, $n=4$

23.
$$f(x) = \sec x$$
, $n = 2$

24.
$$f(x) = \tan x$$
, $n = 3$

In Exercises 25-30, find the nth Taylor polynomial centered

25.
$$f(x) = \frac{1}{x}$$
, $n = 4$, $c = 1$

26.
$$f(x) = \frac{2}{x^2}$$
, $n = 4$, $c = 2$

27.
$$f(x) = \sqrt{x}$$
, $n = 4$, $c = 1$

28.
$$f(x) = \sqrt[3]{x}$$
, $n = 3$, $c = 8$

29.
$$f(x) = \ln x$$
, $n = 4$, $c = 1$

30.
$$f(x) = x^2 \cos x$$
, $n = 2$, $c = \pi$

In Exercises 53 and 54, determine the values of x for which the function can be replaced by the Taylor polynomial if the error cannot exceed 0.001.

53.
$$f(x) = e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}, \quad x < 0$$

54.
$$f(x) = \sin x \approx x - \frac{x^3}{3!}$$

Getting at the Concept

- 55. An elementary function is approximated by a polynomial. In your own words, describe what is meant by saying that the polynomial is *expanded about c* or *centered at c*.
- 56. When an elementary function f is approximated by a second-degree polynomial P₂ centered at c, what is known about f and P₂ at c?
- 57. State the definition of an nth-degree Taylor polynomial of f centered at c.
- 58. Describe the accuracy of the nth-degree Taylor polynomial of f centered at c as the distance between c and x increases.
- 59. In general, how does the accuracy of a Taylor polynomial change as the degree of the polynomial is increased?
- 60. The graphs show first-, second-, and third-degree polynomial approximations P₁, P₂, and P₃ of a function f. Label the graphs of P₁, P₂, and P₃. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

61. Comparing Maclaurin Polynomials

(a) Compare the Maclaurin polynomials of degree 4 and degree 5, respectively, for the functions

$$f(x) = e^x$$
 and $g(x) = xe^x$.

What is the relationship between them?

- (b) Use the result in part (a) and the Maclaurin polynomial of degree 5 for $f(x) = \sin x$ to find a Maclaurin polynomial of degree 6 for the function $g(x) = x \sin x$.
- (c) Use the result in part (a) and the Maclaurin polynomial of degree 5 for $f(x) = \sin x$ to find a Maclaurin polynomial of degree 4 for the function $g(x) = (\sin x)/x$.

62. Differentiating Maclaurin Polynomials

- (a) Differentiate the Maclaurin polynomial of degree 5 for $f(x) = \sin x$ and compare the result with the Maclaurin polynomial of degree 4 for $g(x) = \cos x$.
- (b) Differentiate the Maclaurin polynomial of degree 6 for $f(x) = \cos x$ and compare the result with the Maclaurin polynomial of degree 5 for $g(x) = \sin x$.
- (c) Differentiate the Maclaurin polynomial of degree 4 for $f(x) = e^x$. Describe the relationship between the two series.
- 63. Graphical Reasoning The figure shows the graph of the function

$$f(x) = \sin\left(\frac{\pi x}{4}\right)$$

and the second-degree Taylor polynomial

$$P_2(x) = 1 - \frac{\pi^2}{32}(x - 2)^2$$

centered at x = 2.

- (a) Use the symmetry of the graph of f to write the second-degree Taylor polynomial for f centered at x = -2.
- (b) Use a horizontal translation of the result in part (a) to find the second-degree Taylor polynomial for f centered at x = 6.
- (c) Is it possible to use a horizontal translation of the result in part (a) to write a second-degree Taylor polynomial for f centered at x=4? Explain.

- **64.** Prove that if f is an odd function, then its nth Maclaurin polynomial contains only terms with odd powers of x.
- 65. Prove that if f is an even function, then its nth Maclaurin polynomial contains only terms with even powers of x.
- **66.** Let $P_n(x)$ be the *n*th Taylor polynomial for f at c. Prove that $P_n(c) = f(c)$ and $P^{(k)}(c) = f^{(k)}(c)$ for $1 \le k \le n$. (See Exercises 9 and 10.)
- 67. Writing The proof in Exercise 66 guarantees that the Taylor polynomial and its derivatives agree with the function and its derivatives at x = c. Use the graphs and tables in Exercises 33–36 to discuss what happens to the accuracy of the Taylor polynomial as you move away from x = c.

In Exercises 31 and 32, use a computer algebra system to find the indicated Taylor polynomials for the function f. Graph the function and the Taylor polynomials.

$$31. f(x) = \tan x$$

32.
$$f(x) = \frac{1}{x^2 + 1}$$

(a)
$$n = 3$$
, $c = 0$

(a)
$$n = 2$$
, $c = 0$

(b)
$$n = 5$$
, $c = 0$

(b)
$$n = 4$$
, $c = 0$

(c)
$$n = 3$$
, $c = \pi/4$

(c)
$$n = 4$$
, $c = 1$

33. Numerical and Graphical Approximations

(a) Use the Maclaurin polynomials $P_1(x)$, $P_3(x)$, $P_5(x)$, and $P_7(x)$ for $f(x) = \sin x$ to complete the table.

x	0	0.25	0.50	0.75	1.00
sin x	0	0.2474	0.4794	0.6816	0.8415
$P_1(x)$					
$P_3(x)$					
$P_5(x)$					
$P_7(x)$					

- (b) Use a graphing utility to graph $f(x) = \sin x$ and the Maclaurin polynomials in part (a).
- (c) Describe the change in accuracy of a polynomial approximation as the distance from the point where the polynomial is centered increases.

34. Numerical and Graphical Approximations

(a) Use the Taylor polynomials $P_1(x)$ and $P_4(x)$ for $f(x) = \ln x$ centered at c = 1 to complete the table.

x	1.00	1.25	1.50	1.75	2.00
ln x	0	0.2231	0.4055	0.5596	0.6931
$P_1(x)$					
$P_4(x)$					

- (b) Use a graphing utility to graph $f(x) = \ln x$ and the Taylor polynomials in part (a).
- (c) Describe the change in accuracy of polynomial approximations as the degree increases.

Numerical and Graphical Approximations In Exercises 35 and 36, (a) find the Maclaurin polynomial $P_3(x)$ for f(x), (b) complete the table for f(x) and $P_3(x)$, and (c) sketch the graphs of f(x) and $P_3(x)$ on the same set of coordinate axes.

x	-0.75	-0.50	-0.25	0	0.25	0.50	0.75
f(x)							
$P_3(x)$							

35.
$$f(x) = \arcsin x$$

36.
$$f(x) = \arctan x$$

In Exercises 37–40, the graph of y = f(x) is shown with four of its Maclaurin polynomials. Identify the Maclaurin polynomials and use a graphing utility to confirm your results.

39.

40.

In Exercises 41-44, approximate the function at the given value of x, using the polynomial found in the indicated exercise.

41.
$$f(x) = e^{-x}$$
,

$$f(\frac{1}{2})$$
, Exercise 13

42.
$$f(x) = x^2 e^{-x}$$
,

$$f(\frac{1}{5})$$
, Exercise 20

43.
$$f(x) = \ln x$$
,

$$f(1.2)$$
, Exercise 29

$$44. \ f(x) = x^2 \cos x,$$

$$f\left(\frac{7\pi}{8}\right)$$
, Exercise 30

In Exercises 45-48, use Taylor's Theorem to obtain an upper bound for the error of the approximation. Then calculate exact value of the error.

45.
$$\cos(0.3) \approx 1 - \frac{(0.3)^2}{2!} + \frac{(0.3)^4}{4!}$$

46.
$$e \approx 1 + 1 + \frac{1^2}{2!} + \frac{1^3}{3!} + \frac{1^4}{4!} + \frac{1^5}{5!}$$

47.
$$\arcsin(0.4) \approx 0.4 + \frac{(0.4)^3}{2 \cdot 3}$$
 48. $\arctan(0.4) \approx 0.4 - \frac{1}{2}$

48.
$$\arctan(0.4) \approx 0.4 - \frac{1}{2}$$

In Exercises 49 and 50, determine the degree of the Machine polynomial required for the error in the approximation at a function at the indicated value of x to be less than 0.001.

49.
$$\sin(0.3)$$

50.
$$e^{0.6}$$

In Exercises 51 and 52, determine the degree of the Macie polynomial required for the error in the approximation 💞 🕍 function at the indicated value of x to be less than 0.0001. computer algebra system to obtain and evaluate the required derivatives.

51.
$$f(x) = \ln(x + 1)$$
, approximate $f(0.5)$.

52.
$$f(x) = \cos(\pi x^2)$$
, approximate $f(0.6)$.