In Exercises 1-4, find the component form of the vector.

- 1. the vector from the origin to the point A = (2, 3)
- 2. the vector from the point A = (2, 3) to the origin
- 3. the vector \overrightarrow{PQ} , where P = (1, 3) and Q = (2, -1)
- 4. the vector \overrightarrow{OP} , where O is the origin, and P is the midpoint of the segment RS connecting R = (2, -1) and S = (-4, 3).

In Exercises 5-10, find the magnitude of the vector and the direction angle θ it forms with the positive x-axis $(0 \le \theta < 360^{\circ})$.

6.
$$\langle -\sqrt{2}, \sqrt{2} \rangle$$

7.
$$(\sqrt{3}, 1)$$

8,
$$\langle -2, -2\sqrt{3} \rangle$$

$$9. \langle -5, 0 \rangle$$

ly Exercises 11-16, find the component form of the vector with the given magnitude that forms the given directional angle with the positive x-axis.

15.
$$3\sqrt{2}$$
, $\pi/4$ radians

16.
$$2\sqrt{3}$$
, $\pi/6$ radians

In Exercises 17-24, let $\mathbf{u} = (3, -2)$ and $\mathbf{v} = (-2, 5)$. Find the (a) component form and (b) magnitude of the vector.

$$2\mu$$
 $2u - 3v$

$$^{2}4 + \frac{3}{5}u + \frac{4}{5}v$$

24.
$$-\frac{5}{13}\mathbf{u} + \frac{12}{13}\mathbf{v}$$

25. Navigation An airplane, flying in the direction 20° east of north at 325 mph in still air, encounters a 40-mph tail wind acting in the direction 40° west of north. The airplane maintains its compass heading but, because of the wind, acquires a new ground speed and direction. What are they?

26. A river is flowing due east at 2 mph. A canoeist paddles across the river at 4 mph with his bow aimed directly northwest (a direction angle of 135°). What is the true direction angle of the canoeist's path, and how fast is the canoe going?

In Exercises 27-32, a particle travels in the plane with position vector $\mathbf{r}(t)$. Find (a) the velocity vector $\mathbf{v}(t)$ and (b) the acceleration vector $\mathbf{a}(t)$.

27.
$$\mathbf{r}(t) = \langle 3t^2, 2t^3 \rangle$$

28.
$$\mathbf{r}(t) = \langle \sin_t 2t, 2\cos t \rangle$$

29.
$$\mathbf{r}(t) = \langle te^{-t}, e^{-t} \rangle$$

30.
$$\mathbf{r}(t) = \langle 2 \cos 3t, 2 \sin 4t \rangle$$

31.
$$\mathbf{r}(t) = \langle t^2 + \sin 2t, t^2 - \cos 2t \rangle$$

32.
$$\mathbf{r}(t) = \langle t \sin t, t \cos t \rangle$$

- 33. A particle moves in the plane with position vector (cos 3t, sin 2t). Find the velocity and acceleration vectors and determine the path of the particle.
- 34. A particle moves in the plane with position vector (sin 4t, cos 3t). Find the velocity and acceleration vectors and determine the path of the particle.
- 35. A particle moves in the plane so that its position at any time $t \ge 0$ is given by $x = \sin 4t \cos t$ and $y = \sin 2t$.
 - (a) Find the velocity and speed of the particle when $t = 5\pi/4$.
 - (b) Draw the path of the particle and show the velocity vector at $t = 5\pi/4$.
 - (c) Is the particle moving to the left or to the right when $t = 5\pi/4$?
- 36. A particle moves in the plane so that its position at any time $t \ge 0$ is given by $x = e^t + e^{-t}$ and $y = e^t e^{-t}$.
 - (a) Find the velocity vector.
 - **(b)** Find $\lim_{t\to\infty} \frac{dy/dt}{dx/dt}$.
 - (c) Show algebraically that the particle moves on the hyperbola $x^2 y^2 = 4$.
 - (d) Sketch the path of the particle, showing the velocity vector at t = 0.