ACTIONS STONE SAISTONEY

2.
$$\frac{1}{2 \cdot 3} + \frac{2}{3 \cdot 4} + \frac{4}{4 \cdot 3} + \frac{5}{5 \cdot 6} + \frac{5}{6 \cdot 7} + \cdots$$

3. $3 - 2 + \frac{27}{4} - \frac{81}{8} + \frac{213}{16} - \cdots$
4. $\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{6} + \frac{11}{11} + \cdots$
5. $\frac{20}{5} - \frac{3}{12} \frac{3}{2^{n-1}} + \frac{1}{5} + \frac{11}{11} + \cdots$
6. $\frac{20}{5} - \frac{(-1)^{n+1}}{2^{n}} + \frac{1}{2^{n}} + \cdots$

In Exercises 7-16, verify that the infinite series diverges

7.
$$\sum_{n=0}^{\infty} 3 \left(\frac{3}{2} \right)^n$$
8. $\sum_{n=0}^{\infty} \left(\frac{4}{3} \right)^n$
9. $\sum_{n=0}^{\infty} 1000(1.055)^n$
10. $\sum_{n=0}^{\infty} 2(-1.03)^n$
11. $\sum_{n=0}^{\infty} \frac{n}{n+1}$
12. $\sum_{n=0}^{\infty} \frac{2n}{n+3}$
13. $\sum_{n=0}^{\infty} \frac{n^2}{n^2+1}$
14. $\sum_{n=0}^{\infty} \frac{n}{\sqrt{n^2+1}}$
15. $\sum_{n=1}^{\infty} \frac{2n+1}{2^{n+1}}$
16. $\sum_{n=1}^{\infty} \frac{n!}{2^n}$

In Exercises 17-20, match the series with the graph of its sequence of partial sums. [The graphs are labeled (a), (b), (c), and (d),] Use the graph to estimate the sum of the series. Confirm your answer analytically.

In Exercises 21-26, verify that the infinite series converges.

 $1. \sum_{n=1}^{\infty} \frac{1}{n+1}$ 3. ∑_e-n

 $\sum_{n=1}^{\infty} \frac{2}{3n+5}$ $\sum_{n=1}^{\infty} ne^{-n/2}$

11.

 $12. \sum_{n=1}^{\infty} \frac{1}{n^{1/3}}$

In Exercises 11 and 12, use the Integral Test to determine convergence or divergence of the p-series.

 $6. \ \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \cdots$

 $\frac{\ln 2}{2} + \frac{\ln 3}{3} + \frac{\ln 4}{4} + \frac{\ln 5}{5} + \frac{\ln 6}{6} + \cdot$ $\frac{1}{4} + \frac{2}{7} + \frac{3}{12} + \dots + \frac{n}{n^2 + 3} + \dots$

15. 1 + 3

13,

 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

14. $\sum_{n=1}^{\infty} \frac{3}{n^{5/3}}$

In Exercises 13-20, use Theorem 8.11 to determine the conver-

gence or divergence of the p-series.

16. $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}$

In Exercises 1-10, use the Integral Test to determine the

CHAPTER 8

Infinite Series

convergence or divergence of the series.

21.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 (Use partial fractions.)
22. $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ (Use partial fractions.)
23. $\sum_{n=0}^{\infty} 2\left(\frac{3}{4}\right)^n$
24. $\sum_{n=0}^{\infty} 2\left(-\frac{1}{2}\right)^n$
25. $\sum_{n=0}^{\infty} (0.9)^n = 1 + 0.9 + 0.81 + 0.729 + \cdots$

22.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$
 (Use partial fractions.

$$\begin{array}{ccc}
& & & & \\
24 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

25.
$$\sum_{n=1}^{\infty} (0.9)^n = 1 + 0.9 + 0.$$

$$\sum_{n=0}^{\infty} (-0.6)^n = 1 - 0.6 + 0.36 - 0.216 + \cdots$$

10.

k is a positive integer k is a positive integer

19.

18. $1 + \frac{1}{3\sqrt{4}} + \frac{1}{3\sqrt{9}} + \frac{1}{3\sqrt{16}} + \frac{1}{3\sqrt{25}} + \cdots$ 17. $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \frac{1}{5\sqrt{5}} + \cdots$

 $\sum_{n=1}^{\infty} \frac{n^{k-1}}{n^k + c}$ $\sum_{n=1}^{\infty} n^k e^{-n},$

'n	n
	cs
	10
	20
	50
	100

27.
$$\sum_{n=1}^{\infty} \frac{6}{n(n+3)}$$
28.
$$\sum_{n=1}^{\infty} \frac{4}{n(n+4)}$$
29.
$$\sum_{n=1}^{\infty} 2(0.9)^{n-1}$$
30.
$$\sum_{n=1}^{\infty} 3(0.85)^{n-1}$$
31.
$$\sum_{n=1}^{\infty} 10(0.25)^{n-1}$$
32.
$$\sum_{n=1}^{\infty} 5\left(-\frac{1}{3}\right)^{n-1}$$

In Exercises 33-46, find the sum of the convergent series

33.
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$
34.
$$\sum_{n=1}^{\infty} \frac{4}{n(n+2)}$$
35.
$$\sum_{n=1}^{\infty} \frac{8}{(n+1)(n+2)}$$
36.
$$\sum_{n=1}^{\infty} \frac{(2n+1)(2n+3)}{(2n+1)(2n+3)}$$
37.
$$\sum_{n=0}^{\infty} (\frac{1}{2})^n$$
38.
$$\sum_{n=0}^{\infty} (\frac{4}{5})^n$$
39.
$$\sum_{n=0}^{\infty} (-\frac{1}{2})^n$$
40.
$$\sum_{n=0}^{\infty} 2(-\frac{2}{3})^n$$

42. $8+6+\frac{9}{2}+\frac{27}{8}+\cdots$

41. 1 + 0.1 + 0.01 + 0.001 + .

44. $4-2+1-\frac{1}{2}+\cdots$ 43. $3-1+\frac{1}{3}-\frac{1}{9}+\cdots$

 $\sum_{n=0}^{\infty} \left(\frac{1}{2^n} - \frac{1}{3^n} \right)$

46.

 $\sum_{n=1}^{\infty} [(0.7)^n + (0.9)^n]$

					S
100	50	20	10	U	72

28. The Riemann zeta function for real numbers is defined for all $\sum_{n=1}^{\infty} \frac{1}{n^{1.04}}$ 20. 7 N8

	1					1
	100	50	20	10	5	Ħ
					eries.	each series
sequence of partial sums approaches the sum of the series for	nes th	pproac	sums a	partial	nce of	seque
Ose a graphing utility to graph the first ten terms of the sequence of partial sums. (c) Compare the rate at which the	the	graph (c) Co	sums.	ung ut partial	ace of	seques
Numerical and Graphical Analysis (a) Use a graphing utility to find the indicated partial sum S_n and complete the table. (b)	is (a	analys sum S	phical partial	Numerical and Graphical Analysis to find the indicated partial sum S_n	rical a	Nume to fine
Why do you think some converge and others diverge?	and o	nverge	ome co	think s	do you	Why
Writing In Exercises 21–24, $\lim_{n\to\infty} a_n = 0$ for each series but they do not all converge. Is this a contradiction of Theorem 8.9?	ontrac	24, lin	ses 21– age. Is	Exercia Il conve	28 In o not a	Writin they d
n2	i d <u>i</u>	.3			'n	n lan
2	18	24			100	18
3 10	Ĩ№8	22.			2	8 ≥
2 4 6 8 10	17		7	4 6 8 10	- I	1
۰	2 4					
•	4 5 6			0 0	,	2 3
	2.4	(a)				->- <u>°</u>
2 4 6 8 10			*	4 6 8 10	2 4	+
	1 2				0	2
	υ A			8	• • •	4 6
	(g	_				÷ 5°

- $\zeta(x) = \sum_{n=1}^{\infty} n^{-x}$ converges. Find the domain of the function x for which the series
- 29. In Exercises 29 and 30, find the positive values of p for which the series converges. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ $30. \sum_{n=2}^{\infty} \frac{\ln n}{n^{\rho}}$
- 33. A friend in your calculus class tells you that the following 32. Define a p-series and state the requirements for its conver-31. State the Integral Test and give an example of its use. Find a series such that the nth term goes to 0, but the series Geningar The Concepts series converges because the terms are very small and approach 0 rapidly. Is your friend correct? Explain. 10,000 + 10,001 + 10,002 + .
- 35. Let f be a positive, continuous, and decreasing function for $x \ge 1$, such that $a_n = f(n)$. Prove that if the series

$$0 \le R_N \le \int_N^\infty f(x) \, dx.$$

converges to S, then the remainder $R_N = S - S_N$ is bounded by

36. Show that the result of Exercise 35 can be written as